DNA intercalator BMH-21 inhibits RNA polymerase I independent of DNA damage response

نویسندگان

  • Laureen Colis
  • Karita Peltonen
  • Paul Sirajuddin
  • Hester Liu
  • Sara Sanders
  • Glen Ernst
  • James C. Barrow
  • Marikki Laiho
چکیده

DNA intercalation is a major therapeutic modality for cancer therapeutic drugs. The therapeutic activity comes at a cost of normal tissue toxicity and genotoxicity. We have recently described a planar heterocyclic small molecule DNA intercalator, BMH-21, that binds ribosomal DNA and inhibits RNA polymerase I (Pol I) transcription. Despite DNA intercalation, BMH-21 does not cause phosphorylation of H2AX, a key biomarker activated in DNA damage stress. Here we assessed whether BMH-21 activity towards expression and localization of Pol I marker proteins depends on DNA damage signaling and repair pathways. We show that BMH-21 effects on the nucleolar stress response were independent of major DNA damage associated PI3-kinase pathways, ATM, ATR and DNA-PKcs. However, testing a series of BMH-21 derivatives with alterations in its N,N-dimethylaminocarboxamide arm showed that several derivatives had acquired the property to activate ATM- and DNA-PKcs -dependent damage sensing and repair pathways while their ability to cause nucleolar stress and affect cell viability was greatly reduced. The data show that BMH-21 is a chemically unique DNA intercalator that has high bioactivity towards Pol I inhibition without activation or dependence of DNA damage stress. The findings also show that interference with DNA and DNA metabolic processes can be exploited therapeutically without causing DNA damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small molecule BMH-compounds that inhibit RNA polymerase I and cause nucleolar stress.

Activation of the p53 pathway has been considered a therapeutic strategy to target cancers. We have previously identified several p53-activating small molecules in a cell-based screen. Two of the compounds activated p53 by causing DNA damage, but this modality was absent in the other four. We recently showed that one of these, BMH-21, inhibits RNA polymerase I (Pol I) transcription, causes the ...

متن کامل

Small Molecule Therapeutics Small Molecule BMH-Compounds That Inhibit RNA Polymerase I and Cause Nucleolar Stress

Activation of the p53 pathway has been considered a therapeutic strategy to target cancers. We have previously identified several p53-activating small molecules in a cell-based screen. Two of the compounds activated p53 by causing DNA damage, but this modality was absent in the other four. We recently showed that one of these, BMH-21, inhibits RNA polymerase I (Pol I) transcription, causes the ...

متن کامل

DNA damage-dependent transcriptional arrest and termination of RNA polymerase II elongation complexes in DNA template containing HIV-1 promoter.

We have developed a new biochemical method to isolate a homogeneous population of RNA polymerase II (RNA pol II) elongation complexes arrested at a DNA damage site. The method involves triple-helix formation at a predetermined site in DNA template with a third strand labeled with psoralen at its 5'-end and a biotin at the 3'-end. After triplex formation and near-ultraviolet irradiation (360 nm)...

متن کامل

Selective inhibition of RNA polymerase I transcription as a potential approach to treat African trypanosomiasis

Trypanosoma brucei relies on an essential Variant Surface Glycoprotein (VSG) coat for survival in the mammalian bloodstream. High VSG expression within an expression site body (ESB) is mediated by RNA polymerase I (Pol I), which in other eukaryotes exclusively transcribes ribosomal RNA genes (rDNA). As T. brucei is reliant on Pol I for VSG transcription, we investigated Pol I transcription inhi...

متن کامل

Functions of Saccharomyces cerevisiae 14-3-3 proteins in response to DNA damage and to DNA replication stress.

Two members of the 14-3-3 protein family, involved in key biological processes in different eukaryotes, are encoded by the functionally redundant Saccharomyces cerevisiae BMH1 and BMH2 genes. We produced and characterized 12 independent bmh1 mutant alleles, whose presence in the cell as the sole 14-3-3 source causes hypersensitivity to genotoxic agents, indicating that Bmh proteins are required...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014